IoT-Sensor HarvyLR

Bedienungsanleitung und Technische Daten der LoRaWAN-Sensoren HarvyLR-36 und HarvyLR-360

© 2023 deZem GmbH

Version 2.2

Feb 2023

deZem GmbH

Wilmersdorfer Str. 60, 10627 Berlin Telefon: +49 30 31 800 730

Fax: +49 30 31 800 731

 $contact @ dezem.de \cdot www.dezem.de \\$

Bedienungsanleitung IoT-Sensor HarvyLR

Inhalt

1	Einleitung	3
2	Sicherheitshinweise	3
3	Produktbeschreibung	4
	3.1 Produktbezeichnung	4
	3.2 Bestimmungsgemäßer Gebrauch	4
4	Funktionsbeschreibung	5
5	Installation	6
	5.1 HarvyLR erstmalig aufladen	6
	5.2 Sensor anschließen	6
	5.3 Einrichtung in deZemAd	7
6	Entsorgung	7
7	Technische Daten	8
8	Telefon-Sunnort	9

1 Einleitung

Bitten lesen Sie sich die nachfolgenden Informationen aufmerksam durch.

Bewahren Sie diese auf bzw. geben Sie sie an andere Benutzer des Produkts weiter. Besuchen Sie unsere Webseite www.dezem.de und dort die jeweils zum Produkt gehörige Internetseite. Dort finden Sie ggf. weitere Informationen zum Produkt.

Dieses Produkt erfüllt die gesetzlichen, nationalen und europäischen Anforderungen. Alle enthaltenen Firmennamen und Produktbezeichnungen sind Warenzeichen der jeweiligen Inhaber. Alle Rechte vorbehalten.

2 Sicherheitshinweise

Das Gerät entspricht der elektrischen Schutzklasse III.

- Zum Erhalt der Schutzklasse III dürfen ausschließlich externe Sensoren/Stromquellen mit dem Gerät verbunden werden, die ebenso den SELV (Sicherheitskleinspannung) Anforderungen entsprechen - Schutzklasse III.
- Stöße oder Schläge müssen vermieden werden.
- Bei Beschädigungen am Gehäuse oder Kabel kontaktieren Sie bitte deZem GmbH und installieren das betroffene Gerät nicht.
- deZem Klappstromwandler dürfen nicht an unisolierten oder beschädigten Leitungen angeklemmt werden
- Das Produkt ist fachgerecht und nach den vorgegebenen Montagerichtlinien zu installieren.
- Die Installation darf nur von entsprechend qualifiziertem Fachpersonal durchgeführt werden.
- Aus Sicherheits- und Zulassungsgründen ist das eigenmächtige Umbauen und/oder Verändern des Produkts nicht gestattet.
- Wartungs-, Einstellungs- oder Reparaturarbeiten dürfen nur von einem Fachmann/einer Fachwerkstatt durchgeführt werden, die mit den damit verbundenen Gefahren bzw. einschlägigen Vorschriften vertraut ist
- Das Produkt darf keinen extremen Temperaturen, direktem Sonnenlicht oder starken Vibrationen ausgesetzt werden. Schützen Sie das Produkt vor Staub und Schmutz.

3 Produktbeschreibung

3.1 Produktbezeichnung

Typbezeichnung	HarvyLR-36	0,091 Ohm (+/- 2 %) - 1 Ohm und 0,1 Ohm parallel		
Shunt-Widerstand	1 Ohm (+/- 1 %)			
Max. Input	25 mA AC 36 mA DC	250 mA AC 360 mA DC		

^{*} bei Verwendung dieser Wandlertypen gilt die Schutzklasse II

Im Folgenden sind mit der allgemeinen Kurzbezeichnung "HarvyLR" beide Produktvarianten gemeint.

LoRaWAN® und das LoRAWAN® Logo sind Marken und werden unter Lizenz der LoRa Alliance® verwendet.

3.2 Bestimmungsgemäßer Gebrauch

Der HarvyLR dient der drahtlosen Erfassung von AC- und DC-Strömen über LoRaWAN und er ist selbstversorgend, d. h. er benötigt keine externe Stromversorgung oder Batterie. Er ist insbesondere zur Erfassung von Effektivströmen mithilfe von deZem Klappstromwandlern sowie von industriellen 4–20 mA Ausgangssignalen geeignet. Der im Sensor integrierte intelligente Ereignisfilter liefert sekundengenaue Messreihen (Anschaltströme etc.) bei festgelegter Maximalrate.

Eine andere Anwendung als zuvor beschrieben sowie Änderungen am Produkt gelten als nicht bestimmungsgemäße Verwendung und kann die Schutzwirkung beeinträchtigen.

4 Funktionsbeschreibung

Der HarvyLR erfasst AC- und DC-Ströme über LoRaWAN. Der im Sensor integrierte intelligente Ereignisfilter liefert sekundengenaue Messreihen (Anschaltströme etc.) bei festgelegter Maximalrate. Schon ein Signalstrom (AC oder DC) von durchschnittlich nur 0,15 mA genügt, um Messwerte durchschnittlich im 10-Minuten-Takt zu erfassen und zu versenden. Bei größeren Eingangsströmen sind noch höhere Datenraten möglich.

Optional kann der HarvyLR in die deZem DataSuite eingebunden werden, siehe <u>Kapitel 5.3</u>. Dort stehen deren Messwertverläufe unmittelbar online für weitere Zwecke zur Verfügung.

Messintervall

Isec (avg-long)	Messintervall
<= 30 mA oder Vsys > FastSampleLevel	1 Sek.
>= 20 mA	3 Sek.
>= 10 mA	5 Sek.
>= 5 mA	10 Sek.
>= 2 mA	20 Sek.
Sonstige	30 Sek.

LoRaWAN Payload Codierung (Port 1)

Name	Тур	Bytes	Beschreibung	Beispiel	Wertebereich
Version	uint8[3]	0–2	Firmware-Version	1, 5, 1 v1.5.1	
Shunt Value	uint8	3	Wert des Shunt-Widerstands on hw 1/10 Ohm	10 1 Ohm 1 0.1 Ohm	
Amplifier Gain	uint8	4	Gain, typisch 100x		
Vsys (current)	uint16	5–6	Systemspannung bzw. Ladung des 0.47F Supercaps; Systemspannung in 1/10 mV	29470 29 47 mV 2.947V	<= 3600 mV
Vsys (min)	uint16	7–8	Minimale Systemspannung seit letz- tem LoRaWAN-Uplink-Paket; System- spannung in 1/10 mV		
Vsys (max)	uint16	9–10	Maximale Systemspannung seit letz- tem LoRaWAN-Uplink-Paket; System- spannung in 1/10 mV		
Vamp (rms)	uint16	11–12	Ausgangsspannung (Effektivwert) des Verstärkers (x100 Gain) in 1/10 mV	35991 3.5991 V	
Isec (current)	uint16	13–14	Effektivstrom (errechnet aus Shunt- Wert und Vamp); Sekundärstrom CT in 1/100 mA	3101 31.01 mA 12034 120.34 mA	036 mA (1 Ohm) 0360 mA (0.1 Ohm)
Isec (avg-long)	uint16	15–16	Moving Average Filter seit Power Up über Isec (current); Berechnung (exponent=4): Filtered Value = (15 * oldValue + newValue) / 16; Sekundärstrom CT in 1/100 mA		и

Name	Тур	Bytes	Beschreibung	Beispiel	Wertebereich
Isec (avg-short)	uint16	17–18	Mittelwert Filter mit Reset bei letz- tem LoRaWAN-Upload (max. 600 Werte); Sekundärstrom CT in 1/100 mA		u
Isec (min)	uint16	19–20	Minimaler Sekundärstrom seit letz- tem LoRaWAN-Uplink-Paket; Sekun- därstrom CT in 1/100 mA		и
Isec (max)	uint16	21–22	Maximaler Sekundärstrom seit letz- tem LoRaWAN-Uplink-Paket; Sekun- därstrom CT in 1/100 mA		и
Meas. Counter	uint16	23–24	Anzahl Messungen seit letztem LoRa- WAN-Upload	0x000f 15 Mes- sungen seit letz- tem Uplink	x (uint32)
Last upload	uint16	25–26	Sekunden seit letztem Upload/Zeit- dauer der Mittelwertbildung; Zeit in Sekunden seit letztem Uplink		x Sekunden
Temp	int16	27–28	Temperatur in 1/10 °C; nRF52832 temp sensor +-5°C Genauigkeit;		
Power Loss?	uin8	29	1 = Power Loss detected		
			0 = No Power loss detected; wenn Isec < 0.75mA		

5 Installation

5.1 HarvyLR erstmalig aufladen

Voraussetzung: Der HarvyLR ist an einem LoRaWAN-Server (z.B. deZem IoT-Plattform, d. h. deZem.io) eingerichtet.

- 1. Zum erstmaligen Aufladen empfehlen wir, den HarvyLR über das optionale USB-Adapterkabel am Computer anzuschließen. Sobald Werte vom Sensor an den LoRaWAN-Server übertragen werden, ist der HarvyLR ausreichend geladen. Die Ladedauer beträgt bei Verwendung des USB-Adapterkabels max. 6 Min.
- 2. Den HarvyLR vom Computer trennen und das USB-Adapterkabel entfernen.

Alternativ kann der Sensor auch direkt, wie im nächsten Abschnitt beschrieben, ohne vorheriges Aufladen angeschlossen werden. In dem Fall werden ca. 2 mAh für das Aufladen benötigt. Je nach Primärstrom kann es in dem Fall unterschiedlich lange dauern, bis der HarvyLR das erste Mal sendet.

5.2 Sensor anschließen

 Den HarvyLR an den entsprechenden Klappstromwandler für eine Effektivstrommessung oder an das Adapterkabel (für 4–20 mA Signale) anschließen. Das Sensorgehäuse kann frei hängend oder mit Kabelbindern befestigt betrieben werden.

HINWEIS

Die Polarität muss beim 4–20 mA Signal nicht beachtet werden.

WARNUNG

Schließen Sie NIEMALS einen Stromwandler an einen Leiter an, wenn dieser nicht mit dem HarvyLR oder einem anderen Endgerät verbunden ist. Andernfalls können sich hohe Spannungen am Wandler-Ausgang aufbauen. Zwischen Leiter und Klappstromwandler muss zwingend eine zusätzliche Isolierung angebracht werden, um die o.g. SELV-Anforderungen (vgl. Kap. 2 Sicherheitshinweise) von extern an das Gerät angeschlossenen Sensoren/Stromquellen zu erfüllen.

5.3 Einrichtung in deZemAd

Wandler- typ	Max. Primärstrom [in A]		Min. Primärstrom [in A]	Nominaler Sekundär- strom [in mA]	Teilungs- faktor	Max. Ader-Ø [in mm]	Max. Leiter- querschnitt [in mm²]	Skalierungs- faktor deZemAd
	HarvyLR-360	HarvyLR-36		deZem K	lappstromw	/andler		
T80	80	50	0,8	40	2000	5,6	25	2
T80/26,6	80	75	1	26,7	3000	5,6	25	3
T150/40	150	94	1	40	3750	8	50	3,75
T300	300	30	0,9	250	1200	13,8	150	1,2
T300/40	300	188	1,6	40	7500	13,8	150	7,5
T500	500	50	0,8	250	2000	19,5	300	2
T500/40	500	312	2,8	40	1250	19,5	300	12,5

4 –20 mA Analog-Signale

0,001

6 Entsorgung

In Deutschland und für direkt aus Deutschland gelieferte Produkte: Alle Geräte müssen einer geordneten Verwertung zugeführt werden. Aufgrund der anzuwendenden Vorschriften dürfen die elektrischen und elektronischen Geräte der deZem GmbH nicht über die öffentlichen Sammelstellen für Elektrogeräte entsorgt werden. Die kompletten elektronischen Altgeräte der deZem GmbH sind zur Entsorgung an uns zurückzusenden. Die freigemachte Lieferung ist an folgende Adresse zu senden:

deZem GmbH, Wilmersdorfer Str. 60, 10627 Berlin

In Ländern der europäischen Union außerhalb Deutschlands: Informationen zur korrekten Entsorgung erhalten Sie durch Ihren Händler oder dem zuständigen Vertrieb.

7 Technische Daten

Тур	HarvyLR-36	HarvyLR-360		
Abmessungen Gehäuse	HxBxT: 22x69x49 mm			
Gewicht	50 g			
Spannungsversorgung	Selbstversorgend, Eingangsspannur	ng max. 3 V		
Eingangsströme	0–25 mA AC	0–250 mA AC		
	0–36 mA DC	0–360 mA DC		
Anschluss	1x JST-Buchse, passend zu deZem Klappstromwandlern			
IoT-Protokoll	LoRaWAN v1.03, Class A Device, EU	863-870 Mhz		
Zulässige Umgebungsbedingungen Temperatur: 0–55 °C Luftfeuchtigkeit: 30–60 % Schutzart: IP20				
Zulässige Transportbedingungen				

HarvyLR Default-Parameter

HarvyLR Default-Parameter				
Name	Тур	Bytes		
ShuntVal	1000	Shunt-Widerstand in [mOhm] Wenn auf 100 gesetzt, wird tatsächlich 91 verwendet!		
TxMinInterval	900	Min. LoRaWAN-Upload-Intervall in [s]		
LoRaLevel	3100	Min. Spannungslevel für reguläre LoRaWAN-Uploads in [mV]		
ColdStartEndLevel	2700	Min. Spannungslevel für das Ende des initialen Kaltstarts in [mV]. Sobald einmalig Vsys > ColdStartEndLevel, beginnt der Sensor zu messen		
ExpFilterExponent	4	Exponentialfilter Exponent (2^x), Default: 4 -> 16		
IsecBrownout	500	Isec Wert in [μ A], bei dem ein "Brownout" gesendet wird		
FastSampleLevel	3500	Systemspannung in [mV], wenn jede Sekunde über Sample		
FilterAbs	180	Absolute Vamp Differenz in [mV], um Uplink auszulösen		
FilterRel	85	Erforderliche relative Änderung von $Isys$ in [%], für Instant-Upload. Wert[1100] z.B. => +/- 15 %		
LogUart	false	Auf "true" einstellen, um detaillierte Logs auf UART zu drucken (benötigt mehr Energie). Auch wenn auf "false" eingestellt, werden einige Logs generiert.		

Bedienungsanleitung IoT-Sensor HarvyLR

LoRaWAN Frequenzen

Richtung	Frequenz	Bandbreite	Modulation	Auslastungs- grad	Sende- leistung
RX + TX	868.1 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	868.3 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	868.3 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	868.3 MHz	+/- 0.125 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	868.5 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	867.1 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	867.5 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	867.7 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm
RX + TX	867.9 MHz	+/- 0.0625 MHz	LoRa	≤ 1%	≤ 14 dBm

RX: receive mode, TX: transmit mode

8 Telefon-Support

Haben Sie weitere Fragen zur Einrichtung und Bedienung? Das deZem Team beantwortet Ihnen diese gerne.

Rufen Sie uns an unter: +49 30 3180 0730 oder schreiben Sie uns an support@dezem.de.